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1. INTRODUCTION

Recently proposed space structures have grown increasingly large
and complex. These may be delivered to orbit by the space shuttle and
then deployed/assembled on orbit. To reduce weight, efficlent designs of
such systems tend to lead to flexible, low-frequency, and often joint-
dominated structures. Interaction between rigid body motion and
structural deformation will likely occur. For efficient operation of
system requiring component articulation, it is desirable to maneuver
components as rapidly as possible. Operational speed is limited by
excessive dynamic deformation if vibrations are not suppressed. 1In
order to suppress excessive vibration response, active controls may be
utilized. The control design is usually based on linear methods, however
the articulation is governed by nonlinear equations, moreover, design
methods use reduced structural models. To access these design
performance as well as stabilities, analytical simulations are usually
performed.

Simulation codes for multibody systems such as DADS[1], DISCOS([2],
and TREETOPS[3] use assumed mode approach to describe the structural
deformations of components. This approach requires users to pick a
reference frame for the component, discretize the component into finite
elements, select component boundary conditions upon which the modes will
be generated, solve the eigenvalue problem for deformation modes and
select a modal set for the application at hand. Modal selection is often
the most crucial part in the procedure. Since deformations of the
component are defined as linear combination of the selected modes, the
component can only deform in the space spanned by the selected modes.
Therefore, results of the modal approach will be misleading if any modes
are significantly excited were not selected. To predict which modes will
get excited can be a difficult challenge in a flexible multibody system,
since the system configurations are changing with time. Especially is
thus true for many proposed future spacecrafts which have complicated
geometry and joint hinges.

To provide an alternative approach which circumvented some of
these difficulties, the LATDYN computer code was developed for research
purposes. The LATDYN program is finite-element-based. The user model the
component with finite elements, instead of using truncated modes which
have to be generated outside the multibody analysis codes. In order to
separate the rigid body motion and small deformations in the finite
element approach, a coordinate system is chosen to represent the large
displacement and rotation of the element. Deformations of the element
are then defined with respect to the rigid body configuration of the
element. At the element-level, mass matrices are calculated. The
component mass matrix is obtained by assembling each elemental mass
matrices as is typically done in conventional small motion/deformation
finite element methods.

To form the system mass matrix, most multibody simulation codes
impose nonlinear kinematic constraints on components that connect to the
same joint. Instead of using constraint equations, the LATDYN program
builds the hinge degree-of-freedom into the system equations of motion
to connect components that share a common joint in a manner patterned
after connectivity relations in conventional, small motion, finite
elements. The mass of the interconnecting joint between the bodies
represents a significant portion of the total mass and the orientation
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of the joint's hinge lines play an important role in determining
structural behavior. It is thus reasonable to construct the finite
element program with the joints as a part of element connectivity.

2. KINEMATICS OF BEAM ELEMENT

The kinematics developed here is applicable to arbitrarily large
displacement and rotational motion of a beam with small deformations.
Consider the beam element with finite element nodes 1 and 2 at initial
(undeformed) and current (deformed) configurations in an inertial X-Y-2
frame, as shown in Fig. 1. In order to specify the configuration of the
beam element, it is necessary to define a set of generalized coordinates
that uniquely define the global displacement of every point in the
deformed element. For each node of the element, an xj-yi-zji (i=1,2)
nodal reference frame having its x axis tangent to the neutral axis of
the beam and y, z axes coincide with the principle axes of the beam
cross section, is chosen to locate and orient the node in the inertia
frame. Vectors rj (i=1,2) from the origin of the initial xi-yi-zji nodal
reference frame to the origin of the current xj-yj-zj nodal reference
frame define the global displacement of nodes 1 and 2. Transformation
matrices Tj; from nodal reference frames to the global frame define
orientations of the nodal reference frame. Deformation of the beam and
displacement of any point in the beam now can be determined using rj

and Tji.

Before deformations of the beam can be defined, rigid body motion
of the beam has to be separated from the large displacement of the
beam. It is chosen to specify rigid body motion of the element by use of
a convected coordinate system Xc-Yc-Zc whose origin is located at node
1. 1Initially, orientations of the convected coordinate system coincides
with the nodal reference frame of both nodes 1 and 2. As the element
moves with large displacement and small deformation, the orientation of
the convected coordinate frame, hence the rigid body motion of the beam,
is determined by defining the Xc axls of the X¢-Yc-Zc¢ frame always lie
along the line connecting nodes 1 and 2, and the Y¢ axis to lie in the
plane formed by the y axis of x1-y1-z1 frame and the Xc axis of X¢-Yc-2c¢
frame. With these definitions, the convected coordinate system is
uniquely determined.

Deformations of the beam element are defined with respect to its
rigid body configuration as

D; = TclTi (1)

where T, denotes the transformation matrix from the rigid body
configuration (or the convected coordinate frame) to the glocbal frame.
Where Dj is the difference in orientations between Tc and T3 at any
time step, due to flexural deformation, namely, a transformation from
Tc to Ti. Note that, Dj can also be regarded as the transformation of
T; that rotates about a vector from the undeformed states to the
current states. Assume that the rotation angles between Tj and T, are
small, then the components of this vector are the three rotation angles
measured with respect to the three axes of Tc [4]. Therefore, Dj can be
simply represented by
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where ¢xi, ¢yi, and 6zi, are rotation angles of Tj about x, y, and =z
axis of Tc, respectively. Physically, they correspond to flexural
deformations of the beam element at nodes 1 and 2.

The rotation angles may be readily extracted from Dj as follows:

xi = (0, 0, 1IDi(0, 1, O)7 (2)
¢yi = (1, O, 0)Dj (0, o, 1)T (3)
6z1 = (0, 1, 0)Di(1, 0, 0)© (4)
Substitution of Eq. 1 into Eqgs.2-4 yields
T
dxi = tc3 ti2 (5)
. T,..
dyi = tcl ti3 (6)
T
¢zi = tc2 ti1 (7)

where tcj and tjij are jth column of Tc and Tj, respectively. Since the
x axis of Tc lies on the line connecting nodes 1 and 2, the direction
cosines of the vector from nodes 1 to node 2, which is the first column
of To, can be written as

tec1=(x2 - r1 + ro ) /L (8)

where rg is a vector from node 1 to node 2 in the initial
configuration. Since the Y. axis of T¢ lies on the same plane formed by
tc1and ti2 , the Z¢ axis of Tc , hence the third column of To, is the
cross product of tci and tj2, namely,

-~

tc3 = tciltiz {9)

The Y. axis can be easily obtained by taking the cross product of t¢3
and tg1.,

tc2 = tei3tel {10)

where a is the skew-symmetric matrix

; = az 0 —ax
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with ay, ay, az being the vector components of vector a. Note that
;T = -a and that ;b = -—ba, which agrees with the vector product
property axb = -bxa.

Let p=I[xc, Yc, 2c] be the position vector of an arbitrary point P
in the beam element, defined with respect to Tc. Define that

&= xc/L
n= yc/L
C= Z(:/L

where I is the length of the beam element. The displacement of a point
P on a beam element due to flexural deformation may be expressed as

u = NO (11)

where N is a 3x6 matrix of shape functions similar to that used in the
standard finite element method, namely

0 (1-4E+38°) L0 (-1+48-3E) 1 0 (-2E+3E°) L (28-3E°):
N=|  -(1-H L 0 (€-28"+8)L  -Li 0 (-E°+E")
—(1-f)1m  (=E+28EHL 0 ~LEN (B8 0

with §, n,and { being xc/L, yc/L, and zc/L respectively, and ®, the
composite vector of rotation angles of nodes 1 and 2,

@ = [ éx1, by1, bz1, Ox2, Oy2, 622 1"

The total displacement of point P as shown in Fig. 1 is, in vector
form,

—

— - -
rP=r, + p+u - Po
where p is the vector [x¢, Yc, zclT and in algebraic form,

:P=r1 + Tcp + Tcu = Tcopo (12)

where Tco is the initial transformation matrix of Tc and Py is the
initial position vector of point P in T;. Note that, axial deformation
is implicitly included in the second term of the right-hand-side of Eq.
12.

3. SUPER-BEAM ELEMENT

In some multibody formulation, the joint connection between
elements is imposed through constraint equations. Here, instead of
introducing additional constraints, extra degree-of-freedom are added to
the original element generalized coordinates to form a super beam-
element consisting of joint and beam.
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Consider a beam element with rigid joint bodies at both ends, as
shown in Fig. 2. For simplicity, assume that no other element is
attached to both joint bodies, and both joints have a one degree-ocf-
freedom hinge. For each joint body, an Xj-Yj-2Zj (i=1,2) body reference
frame is chosen to locate and orient the joint body in the inertia
frame. Vectors Rj (i=1,2) from the origin of the initial body reference
frame to the origin of the current body reference frame define the
global displacement of joint bodies 1 and 2. Transformation matrices TI'j
from joint body reference frames to the global frame define orientations
of the joint body. Vectors that locate joint attachment points in joint
bodies are denoted sj (i=1,2), defined with respect to joint body
reference frames. Therefore, nodal displacements rj of the beam element
can be represented by the joint body displacements R; as

r; = Rj + I'isj - Tiosi (13)

To determine the relation between Tj and 'y, consider coordinate
] 1 L] L4 1] ]
systems Xi -Y¥i -Zj and Xj -yi ~Zi that are located at a joint

attachment point one fixed to the joint body and one fixed to the nodal
v 1 L )

L] ]
frame. Initially, let Xj -Yj -Zj and xj -yi -2j coincide with the z
axes parallel to the hinge axis. Then, the difference in orientations of

both systems at any time is the relative rotation about the axis of
L ] 1 L t T

hinge. The transformation matrix from xj -yj -zj frame to Xj -Yj -Zj
frame is

cos ©; -sin©; 0
©;=| sinB; cos0; 0

0 0 1

L L}
where 0; is the relative rotation angle. Denote I'i and Ti be the
L 1 v ]

transformation matrices of Xi'—Yi'—Zi and xj -yi -zj frames with
respect to Xji-Yi-Zj and xji-yi-zj frames, respectively. Then, the
transformation matrix from joint body frame to the nodal reference frame
can be obtained by sequential transformations as

T (14)

¥ L}
T; = I'iM; ©1 T4
Substituting Egs. 13 and 14 into Eq. 12, the displacement of an
arbitrary point in the beam can be represented in terms of displacements
and orientations of joint bodies at the ends of beam element, and
relative rotations of joint degrges—of—freedom,i.e.,

£ =GRy, T1, 01, Rz, T2, 62) (15)

4. VARTIATIONAL EQUATIONS OF MOTION OF A SUPER-BEAM ELEMENT
The variational equations of motion of a beam element at time t,

for a virtual displacement field that is consistent with the constraints
is written as,
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| user EPaQ+| SrP7£PaQ + | SrP'nPdo = | 8eF 1P
o Q '] 0 (16)

where 5rf is a virtual displacement of point P that is
consistent with constraints, TP is the acceleration of point P, £P is
body force density at point P , hP is the surface traction at point P,

5£p is a kinematically compatible strain variation vector, TP is the
associated stress vector at point P, and Q) and 6 are the volume and
surface of the beam before it is deformed.

By taking the variation of Eq. 15, the virtual displacement of
point P is obtained as

P
or = gRlSRl +gr181t1+g91591+gR2582 +gr287tz +g92892 (17)

where Omj is virtual rotation of I'y. Therefore, the virtual displacement
of a point P in the beam element is represented by the virtual
displacements and rotations of the joint bodies, and virtual rotations
of relative joint degrees-of-freedom.

The acceleration vector of a typical point can be obtained by
taking two time derivatives of Eq. 15, which gives

..p . . .- . . .-
r= glel+gr1m1+g9191'+gR2R2+gr2(02+99292'
+¢R1R1+g‘r1wl+g.'9191+g.'RzR2+g.rzm2+g.9202 (18)

where wj and @4 are angular velocity and angular acceleration of the
joint body 1i.

Substituting Eqs. 17 and 18 into Eq. 16, the first term is

-| udxP'£faQ

Q

= "[BRlT:aanr891:532T:5“2T1892]<u + S(lixaﬂ)uéuézr(ﬂz:éﬂ

(19)
where M is the generalized mass matrix,
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gr,’gr,  9r.9r, gr,"9e,  Ir,"9r, gr,"gr, 9r,"%e, |
ar,"gr, gr,"ge, 9r,"gr,  9r,’9r, 9r,"'%e,
M 9,90, o, I ge,"9r,  Jo, e,
B Lu gr," Jr, gr, dr, 9R2T992
gr,’ar, 9r,"de,
Symmetric IR

and S is quadratic in velocity,

gr,’ (g'Rllil‘*g'l‘,O)ﬁg'elel +9'Rzl.‘2 +gr,0,+de,0.)

ar,” (gr,R1 +gr,0,+de,0: +9'R21i2 +gr,;+ge,0>)

S = Iu gelT(9"R11?1+g’l‘1¢°1+§9@1+9'R21.‘2+9'r2002+9'9292) 40

a gr,T (g, Ry +0r,®1+dp,0; +Gr,Ro+dr,0,+G0.02)

ar,’ (gr,R1+gr,01tde,01 +9'R21i2+9'r20)2+g'9292)
| gp," (gr,R1 +g'l‘,0)1+§9191+§R232+§Fzm2+§9292) ]
Similarly, the second and third term in Eq. 16 become

I 8rP’deQ+I 5xP'h’do
e L

T T T T
= [8R1 ,81[1 ,891, SRZ ,8152 ,562]Q (20)

where Q is the external generalized force vector,

gr,T£° gr,Th’

P P

ar,’f ar,’h

TfP ThP

= Iﬂ gel P dQ+ jd gel P do

gr,'£ gr,"h

P P

ar,’f gr,’h

| 90,7 | ge,"n"

For a Bernoulli beam, the right hand side of Egq. 16, or the
virtual work done by the internal force, may be expressed as

5eP 1PdQ

Q
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0

_ [s&,%, 5n,, 50,, 5R,", 1,", 50,] U

where u] is the axial deformation,

{EAu15u1+EIyu;5u3+EIzu§5u;+GJ¢M8¢Xdec

(21)

A T
u =V (r,~r+x,) (r—ri+ry) - VroTro

u2 and uj are bending displacements in the y and z direction of the
neutral axis, which can be obtained from Eq. 11, and U is the

generalized internal force vector.

Substituting Eqgs. 19-21 into Eq. 16, the variational equation of
motion of a super-beam element can be written as

[8R,", 57,7, 50,, 58,", 5,", 56,)

+ S(ermllellRZIw2162)+ U -Q

for all virtual displacements OR; and 8Rp, virtual rotations 6m; and
dnz, and virtual hinge rotations 80; and 862 that are consistent with

the constraints.

5. APPLICATIONS

5.1.1 Analysis of A Deployable Space Structure

The deployable space structure shown in Fig. 3 is a 20 meter long,
triangular cross section, joint dominated truss structure, referred to
as the Mini-Mast. The structure is used at NASA Langley as a ground
test article for the development of research techniques in structural
dynamic characterization of large space structures and control of
flexible structures. A total of 18 bays, each 1.12 meter long, make up
the 20 meter length of the beam above the deployer mechanism. Figure 4
illustrates two deployed bays of the beam design in more detail. One
bay of the truss beam consists of three longerons, three diagonal
members and a batten triangular truss whose cross-section fits inside a
1.4 m diameter circle. The longerons and diagonal members are connected
to batten triangles at each corner (three corner bodies are built into
each corner of the batten triangle) by revolute joints. A sketch of a
corner body is shown in Fig. 5, primarily to indicate geometric

complexity.

The system is deployed/retracted with two bays at a time. During
deploying/retraction, the vertices of two batten triangles are held
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fixed in orientation while a third batten triangle, located between the
two fixed ones, rotates about the longitudinal axis. Upward/downward
forces are then applied to deploy/retract the system. Revolute joints in
corner bodies at each apex of the triangular cross-section of each bay
and a nearly over-center hinge in each diagonal member allow the beam
truss to deploy/fold into a repeatable beam/stack, as shown in Fig. 4.
At the final stage of deploying, mid-hinge of the diagonal member is
locked up to ensure that the system becomes a structure. It is reopened
as retraction starts. Since each two deploying bays are symmetric to the
middle batten triangle, it is sufficient to analyze only one bay of the
system.

The objective of the analysis is to determine loadings on flexible
members during deployment of one bay of the truss beam. Because of the
symmetric geometry of the system, corner bodies are constrained to move
on a 1.4 m diameter cylinder during deployment. The longerons and
diagonal members are deformed, due to kinematic constraints imposed at
the joints, during deployment. Therefore, orientations of revolute
joints of the longeron and diagonal member play an important role in
design of the truss beam. A set of properly designed revolutes will
decrease deformations, hence decreasing the force required to deploy the
truss beam. The system is designed such that it is not deformed in its
fully retracted position and this then serves as a good starting point
to analyze the system response during deployment.

5.1.2 LATDYN Model Description

The model can be simplified by taking the advantage of symmetric
geometry of triangular cross section of the system. By constraining the
upper triangle to only move along and rotate about the longitudinal axis
of the truss, the LATDYN model of one bay of Mini-Mast reduces to 3
flexible longerons, 3 flexible diagonal members, and 2 batten triangles
that are modelled as rigid bodies, as shown in Fig. 6. The lower batten
triangle, batten triangle A in Fig. 6, is grounded. The upper batten
triangle, batten triangle B in Fig. 6, is driven up and down. The
batten triangles are connected to the longerons and diagonal gembegrs
with revolute joints at each corner, respectively. The geometry and
material properties of the longeron and diagonal members are listed in
Table 1. Initial configuration of the model is chosen with the system
in its fully packaged position, as shown in Fig. 6. Locations and
orientations of each revolute joints of longeron and diagonal member are
listed in Tables 2 and 3, respectively.

5.1.3 Results

The system is deployed by driving the upper triangle in the
longitudial direction without constraining its rotation about the
longitudial axis. The driving constraint is

z=Lt--TLsin (2&L) ], t<T
T 2R T

Z=L, t2T

where L i3 length of the longeron, T is total deploying time, and 2 is
the height of the upper triangle. The deployment moves the upper
triangle a distance L in the z direction in T seconds. In the
simulations which follow, T is taken as 1.0 second.
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Figures 7-8 show the variations of the bending and twisting
moments of the longeron at its midpoint, with the z displacement of the
upper triangle. Figures 9-10 show the bending moments of diagonal member
A and B while figures 11-13 display the time history of the axial forces
of longeron and diagonal member, showing that all truss members in the
system are actually in compression after deployed. This tends to
increase bending stiffness of the truss beam. Figure 14 shows the LATDYN
results for the bending moments of the longeron at the end joining the
upper triangle. Also shown are the predictions of the Astro Co.[8]- the
original Mini-Mast designer and producer, and the best result authors
can achieve using the assumed mode approach. In Fig. 14, both LATDYN and
Astro results predict a minimum bending moment in the longeron when it
rotates about 50 degrees which is reasonable from the geometry of the
structure. Results from the assumed mode approach indicate that the
deformation modes used in the analysis are not complete, which is not
apparent without another analysis test results.

5.2.1 Flapping Motion of Rotor Blade

A number of problems arise which make it necessary to study the
effects of flexibility on blade motion. For example, the affect of
flexible motion on the performance, stresses occur in the deformed
blade, and interactions between the rotational speed and the natural
frequencies of the flexible blade. An aditional complicating fator is
that due to the stiffening effect of centrifugal force, natural '
frequencies of the blade increase as blade rotation speed increases.

A simplified model of an articulated blade with no flap hinge
offset or spring restraint is shown in Fig. 15. Initially, the blade is
straight and tilted 0.157 radian. With no initial hinge velocity, the
blade rotates at a constant speed. Since the centrifugal force always
acts radially outward in a plane normal to the rotation axis, it acts as
a spring force opposing the blade flap motion, hence initicating the
flap motion and deformation.

Simulation of the same flapping blade, using an assumed mode
approach, producing a diverging solution as is reported in Reference 5.
This is because the geometric stiffening effect is not properly
accounted for[6][7].

5.2.2 LATDYN Model and Results

In the simulation of the flapping blade using LATDYN, Rotation
speed of the blade is kept constant in each simulation and gradually
increased in succeeding simulations, starting with 1 rad/sec and going
up to 9 rad/sec. Frequencies are calculated from the transient response
of the simulation using a Fast Fourier Tranform. '

Figures 16 and 17 show the bending moment of the blade at the
midpoint when it rotates at 3 and 6 rad/sec. The results clearly
indicate that the natural frequency of the first flapping bending mode
increases as the rotation speed increases, due to the centrifugal
stiffening effect. Figure 18 displays natural frequencies of the first
bending modes for different rotation speeds, compared to the solutions
derived by Southwell [9]. Good agreement between the LATDYN results and
the Southwell solution is shown: Also shown (dotted lines) in Fig. 18
are different harmonics of the rotor speed. As shown, the natural
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frequency of the first mode intersects with the third harmonic around 8
rad/sec, fourth harmonic around 4 rad/sec ,fifth harmonic around 3
rad/sec, and so on for higher harmonics. A resonance may then occur when
the blade rotates around these speeds. Figure 19 shows the bending
moment of the blade when it rotates at 8 rad/sec, which show that the
magnitude of the bending blade keeps increasing with time. The frequency
of the blade is about three times the rotational speed. The magnitude of
the response in Fig. 19 may not increase indefinitely, but may represent
a beating phenomenon with the period of the beat depending on the
closeness of B rad/sec to the intersection point.

CONCLUSIONS

A three dimensional, finite element based simulation tool for
flexible multibody systems is presented. Hinge degrees-of-freedom is
built into equations of motion to reduce geometric constraints. The
approach avoids the difficulty in selecting deformation modes for
flexible components by using assumed mode method. The tool is applied to
simulate a practical space structure deployment problem. Results of
examples demonstrate the capability of the code and approach.
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